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We are interested in the numerical investigation of the compressible flow of a gaseous 
mixture. Considering a hyperbolic system including the Euler equations for the mixture and 
a mass conservation equation for each species, we propose a new approximation scheme for 
the convective term of the species equations. This approximation relies on some properties of 
the exact solution of the Riemann problem for the multi-component system, and applies when 
an upwind Godunov-type scheme is used for the Euler equations. Its main interest lies in the 
fact that it preserves the positivity and monotonicity of the mass fractions of all species. 
‘f1? 1991 Academic Press. Inc. 

1. INTRODUCTION 

The numerical simulation of flows of gaseous mixtures, and in particular of 
chemically reactive flows, has received increasing attention in the last years and is 
still the subject of numerous investigations. For some of these flows, such as 
transonic reactive flows (see, e.g., [7]), hypersonic flows (see, e.g., [4, 9]), or 
detonations (see, e.g., [19]), the hyperbolic aspects of the phenomenon play a 
major role. This is the origin of our interest in the following system of the “multi- 
component Euler equations,” which contains the classical Euler equations written 
for the mixture and an additional “species equation”: 

PI + (PU), = 03 

CPU), + (PU2 + PL = 03 

E, + Cu(E+ p)l, = 0, 

(P n + (PU Y), = 0 

(1.1) 

(see the definition of the notations below). 
We are interested in the numerical solution of (1.1) using upwind difference 

schemes. Essentially two different strategies have been used in previous studies for 
this problem. Either one uses for the first three equations in (1.1) one of the 
numerous available schemes aimed at solving the Euler equations and one solves 
separately the species equation; or one considers the whole system (1.1) as a system 
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of conservation laws and solves all equations in a coupled way by extending to 
(1.1) one of the above-mentioned “Euler schemes.” Some details about these two 
existing approaches are presented in Section 2 below. 

Our aim is to present a third approach for the solution of (1.1). This new 
approach is based on one property of the exact solution of the Riemann problem 
for (l.l), which is derived in Section 3. Besides its major computational simplicity, 
the proposed method has over the two existing approaches the advantage of 
preserving the maximum principle (and in particular the positivity) for the mass 
fractions of all species. 

Let us now describe more precisely the setting of our work. We are interested in 
the description of the multi-dimensional flow of a compressible gaseous mixture of 
N species. But, for the sake of simplicity, we will consider in a first step the one- 
dimensional flow of a mixture of two gaseous species 3 and Y;. In the absence of 
diffusive and reactive phenomena, this flow is described by system (l.l), where p is 
the density of the mixture, u is its velocity, p its pressure, E the total energy per unit 
volume of the mixture, and Y is the mass fraction of species 9,. If one assumes that 
both species behave as perfect gases, then the pressure in (1.1) is given by the 
relation (see [22]) 

P = b - 1 NE- $u2L (1.2) 

where y is the ratio of the specific heats of the mixture, given by 

yc”,Yl+ (1 - Y) C”2Y2 
lJ= Y&+(1-Y)Cv* ’ (1.3) 

(the subscripts 1 and 2 in this expression refer to species ,JJ and yzp2, respectively). 
As already said, the first three equations in (1.1) with (1.2) together form the classi- 
cal Euler equations, written here for the mixture of both species. Note however 
that, if y, # y2, the coefficient y in (1.2) actually depends on Y, whereas it is con- 
stant in the classical (i.e., single-component) Euler equations. The fourth equation 
in (1.1) will be referred to as the species equation. 

Remark 1. Using the first and fourth equation in (l.l), one can rewrite the 
species equation in nonconservative form as Y, + uY,~ = 0, which shows that the 
variable Y is purely convected by the flow. The latter nonconservative equation is 
the basis of the donor-cell approximation (2.1) below. 

R‘emark 2. In fact the results presented in this paper apply to more general 
situations. We could equally well consider a mixture of N perfect gases: the last 
equation in (1.1) would then be replaced by N- 1 equations (pY,), + (puY,), = 0 
for 1 < k < N - 1 (see Remarks 10, 13, and 17 below). We could also consider the 
case where the last equation in (1.1) describes the convection of different quantities 
which may or may not affect the value of y (the variable Y could, for instance, 
represent a passive scalar, or the variables k and E in the classical k--E turbulence 
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model [27]). Also, the numerical methods presented in this paper can be extended 
to compute the flow of a real gas mixture (see [9] for more details in this 
direction). 

Let us now introduce the notations: 

For the numerical solution of (1.1) (which can be written as W, + F,=O in 
vector form), we will first consider explicit conservative schemes of the form 

w:+l- w~+q‘q+,,z-&z 
At Ax 

= 0, (1.5) 

where the numerical flux &+ ,,2 is evaluated using a “numerical flux function” CD 
which defines the scheme under consideration: 

d1+1/2 = @( w:, w:, 1). (1.6) 

The notations in (1.5) are classical: At and Ax represent the discretization steps in 
time and space, respectively, and i and n are the spatial and temporal subscripts. 
We will sometimes write 

cc+ l/2 = > (1.6) 

here, the superscript n denotes the time level, while the superscripts 1, 2, 3, 4 denote 
the different components of the numerical flux. When no confusion is possible, we 
will write c$~+ 1,2 instead of +I+ 1,2 for the sake of simplicity. 

The remainder of the paper is organized as follows. We recall some facts about 
the two existing numerical approaches in Section 2. The new positivity-preserving 
approximation of the species equation is then presented in Section 3, and some 
extensions are discussed in Section 4. Lastly, Section 5 is devoted to the presenta- 
tion and comparison of some numerical results. 

2. Two EXISTING APPROACHES 

We begin by presenting in this section two existing approaches for the numerical 
solution of (l.l), and by discussing their advantages and drawbacks. We will then 
propose a third new approach in Section 3. 



62 B. LARROUTUROU 

2.1. The Uncoupled Approach 

A first and simple approach to the numerical solution of (1.1) has been used in, 
e.g., [17]. It consists in treating separately at each time step the Euler equations 
and the species equation in (1.1). For Euler equations, one uses one of the classical 
(single-component) “Euler schemes” (such as the approximate Riemann solver of 
Osher [26], or of Roe [28], or the flux vector splitting of Van Leer [32]), with a 
“frozen y.” This means that, for the evaluation of the first three components of 
di+ 112 at time t”, one uses the flux of one of the above Euler schemes computed 
using a frozen value y,+ ,,* = y(( Y;* + Y:, , )/2). Beside this, one uses an upwind 
approximation of the donor-cell type for the species equation; defining u:, ,,2 = 
flu? + u:+, 1, one evaluates the fourth component $f+ ,I2 of c$;+ ,,2 by 

(2.1) 

In the sequel, this uncoupled approximation will be referred to as “approach (A).” 

2.2. The Fully Coupled Approach 

A second type of approximation for system (1.1) has been used in [ 1, 2, 4, 11, 
161, and is discussed in detail in [22]. It consists in seeing (1.1) as a whole, and 
in extending to this bigger system of conservation laws the upwind schemes (of 
Osher, Roe, Van Leer) which have been developed for the single-component case. 
This approach, where the Euler equations and the species equation are not 
separated, will be referred to in the sequel as “approach (B).” 

Referring to [22] for the details, we just recall here the basic facts about system 
(1.1). The components of the flux vector F can be expressed as functions of the con- 
servative variables W’ (1 < Id 4), and the system W, + F( W), = 0 is hyperbolic; the 
Jacobian matrix A(W) = (dF’/a W” has four real eigenvalues A1 = u - c, 1, = U, 
E., = u, and 2, = u+ c, where c= k yp/p is the sound speed, and four real eigen- 
vectors. 

It is then possible to extend to (1.1) the classical upwind schemes developed for 
the Euler equations. We now briefly describe these extended schemes, referring to 
[22] and the references therein for more details. 

2.2.1. The Multi-component Van Leer Scheme 

The extension of the continuously differentiable flux splitting of Van Leer [32] to 
multi-component flows was first derived in [22]. As in the single-component case, 
the numerical flux function has the form: 

@P(W,, W,)=F+(W,)+F-(@‘,A; (2.2) 
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the split fluxes F, and F_ are defined by the identity F(W) = F+(W) + FP ( W) and 
the following expressions: 

* if u>c=&, F+(W)=F(W); 
* if -c<u<c, 

F+(W)= Y2 I’ (F: 
2(y2-1) F: 

(2.3) 

(the first three components of F, have the same expression as in the single-compo- 
nent case, but with the nonconstant coefficient y given by (1.3)); 

* if ud -c, F+(W)=O. 

The following result, which says that this flux splitting can be used to define a 
stable conservative scheme, is proved in [22]: 

PROPOSITION 1. Zf the specljk heat ratio yk of each species in the mixture satisfies 
the inequality 1 -C yk < 3, then all eigenvalues of the Jacobian matrix DF+/D W (resp. 
DF- jD W) are real and positive (resp. negative). 

2.2.2. The Multi-component Roe Scheme 

The extension to mixtures of the conservative upwind scheme based on the 
approximate Riemann solver of Roe [28] has been derived in [ 1, 111. The 
numerical flux function of the extended Roe scheme has the same expression as 
in the single-component case, 

@(W,, WA= F(WJ+F(W,) 1 - 
2 +2 lAl(W,- WA 

where A = A”( W,, W,) is a diagonalisable matrix which satisfies the property: 

F(W,)-F(W,)=&W,- W,). (2.5) 

When y is constant, that is, when y1 y y2 in (1.3) then the matrix A( W,, W,) is 
equal to the Jacobian matrix A( @), where the state @ is “Roe’s average” of W, 
and W,. When y, #y2, the matrix A( I%‘) does no longer satisfy (2.5) and the 
matrix A’ has to be chosen close to but different from A( @) (see [ 1, 11, 221 for the 
details ). 

581/95/1-S 
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2.2.3. The Multi-component Osher Scheme 

The multi-component Osher scheme has been derived in [2]. As in the single- 
component case, the numerical flux function of the extended Osher scheme has the 
expression 

@(W,, W,)= F(ui,)+w/J+ wR 
2 I IA(W)l dW, 

WL 
(2.6) 

where the integration is carried out along a path connecting W, to W, in the state- 
space. The integration path is piecewise parallel to the right eigenvectors of the flux 
Jacobian matrix A, and the evaluation of the integral in (2.6) requires the 
knowledge of the Riemann invariants associated with each eigenvector. As in the 
single-component case, the evaluation of this integral relies on the determination of 
the pressure on the middle part of this integration path (see [2] for the details). 

2.3. Discussion 

The main advantage of approach (A) is its simplicity: even in two or three space 
dimensions, following this approach to transform a single-component Euler code 
into a multi-component code requires a very small programming and computa- 
tional effort. This approach also has the advantage of preserving the positivity of 
the mass fraction Y (the proof of this fact is similar to the one of Lemma 3 below). 
But this approach also has important drawbacks, which will be discussed in more 
detail below. 

Compared to approach (A), all schemes of type (B), except the extended 
Van Leer scheme, are substantially more expensive from the computational point of 
view. This is especially true for the extended Roe or Steger and Warming schemes: 
4 x 4 Jacobian matrices have to be handled (that is, N+ 2 x N+ 2 matrices if one 
considers a mixture of N species), while only 3 x 3 matrices are involved in the 
corresponding schemes of type (A). Nevertheless, approach (B), which is more 
satisfactory from a theoretical point of view, actually gives better results than 
approach (A): the accuracy of the results is greatly improved (see Section 5 below). 

However, we need to make precise here that the “discrete maximum principle” 
for the mass fraction does not hold with any of the two approaches (that is, the 
inequalities 0 < Y < 1 are not preserved by these schemes), except for the multi- 
component Van Leer scheme (see Remark 9 below). But in practice, the mass frac- 
tion values obtained with approach (B) remain much closer to the interval [0, 11 
than those obtained with approach (A) (see Section 5 and [6]). 

Intuitively, one can feel the origin of the inaccuracy of the computed mass 
fraction values in approach (A) where the mass fraction Y is evaluated as the ratio 
of two conservative variables, 

(2.11) 
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in approach (A), these two variables W’ and W4 are advanced in time using two 
different approximations (more precisely, two different upwinding techniques). On 
the opposite, a single global and coupled approach is used for all conservative 
variables W’ in the schemes of type (B). 

This remark leads us to propose a third approach, which we present in the next 
section. 

3. A THIRD APPROACH 

In this section, we propose a third approach in order to improve the multi- 
component Roe and Osher schemes which do not preserve the maximum principle 
for the mass fraction. 

Let us first recall that, in the so-called “Godunov-type” schemes based on 
approximate Riemann solvers (see [ 18]), the numerical flux 41, ,,* is seen as an 
approximation of the flux of the exact solution of the Riemann problem constructed 
with the neighbouring states Wj’ and Wj’, 1. This is why we now examine the 
Riemann problem for system (1.1 ), before we present the new approach (C). 

3.1. The Multi-component Riemann Problem 

Two states W, and W, being given, we consider the Riemann problem: 

W,+F(W),=O for xE[W, t30, 

W(x,O)= w 

i 

WL 
if x < 0, 

R if x > 0. 
(3.1) 

This problem is solved in [ 1, 2, 223. Its exact solution W”(x, t) is presented on 
Fig. 1. It is of course self-similar (i.e., Wg(x, t) only depends on the ratio x/t), and 
consists, as in the single-component case, of four constant states W,, ), WC2), WCJj, 
WC4) separated by shocks, rarefaction waves, or a contact discontinuity. More 
precisely, as shown on Fig. 1, W,, j = W, and WC2, are separated by a wave 
associated with the first characteristic field, that is, with the eigenvalue %, = u - c, 
either a l-shock or a 1-rarefaction wave; WCz, and WC3) are separated by a contact 
discontinuity (associated with the eigenvalue u); WC3) and WC4, = W, are separated 
by a 4-wave, associated with A, = u + c. Also, the pressure p and the velocity ZJ are 
continuous across the contact discontinuity. Last but not least, the mass fraction Y 
remains constant across the l-wave and the 4-wave (whatever these waves are, 
shocks or rarefactions) and only varies across the contact discontinuity. 

For 0 E Iw and t 2 0, we will denote W(o; W,, W,) (or sometimes simply W(a)) 
the value of W*(rrt, t), which is independent of t; and we will call u*( W,, W,) (or 
simply u*) the speed of the contact discontinuity. 

As we could expect, it appears from Fig. 1 that the maximum principle for the 
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4 

‘1 W(Z) \ 
1-rarefaction ‘\, ‘1, 

\ . 

contact 
discontinuity 

4-shock 

FIG. 1. The solution of the multi-component Riemann problem (3.1). 

mass fraction is preserved for the exact solution of the Riemann problem: for 
any 6, we have min( Y,, Y,) < Y(W(a)) <max( Y,, Y,). As a consequence, any 
numerical method where the evaluation of the numerical flux bi+ ,,2 is evaluated 
using an exact Riemann solver (as in the original Godunov method [lS], where 
C,ll2 = F[W(O; WY, WY+ ,)I) will also satisfy the maximum principle for the mass 
fraction. 

But, as we have said above, such is not the case for the numerical schemes based 
on the multi-component approximate Riemann solvers of Roe and Osher. This is 
exactly the essential point of this paper: we state in the next lemma the basic 
property that the exact solution of the Riemann problem satisfies, and that the 
approximate multi-component Riemann solvers should also satisfy in order to 
preserve the maximum principle. This property is the following: 

LEMMA 1. For any states W, and W,, the following equality holds: 

F4[“K”(0)] = I;‘[%‘-(0)] x ; 
if F’[“/V(O)] > 0, 

(3.2) 
R if F’[“K(O)] <O. 

The proof begins with another lemma: 

LEMMA 2. For any states W, and W,, the quantities F’(“/V(O; W,, W,)) and 
u*( W,, W,) have the same sign. 

Proof of Lemma 2. It consists in considering the structure of the exact solution 
W8 of the Riemann problem and in using the classical properties of the rarefaction 
and shock waves. Let us assume, without loss of generality, that U* > 0; we are 
going to show that F’(YV(0)) > 0. 
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FIG. 2. The three different configurations for the 1-rarefaction. 

(a) Consider first the situation where the l-wave is a rarefaction wave, 
located in the region (rl < x/t 6 c2, with (TV < u*. Since this wave is associated with 
the first eigenvalue II, = u - c, we have (see [23]) 

u(V(a)) - c(W(a)) = D, VfTE [a,, 621. 

We then have to consider three different cases (see Fig. 2): 

(3.3) 

(i) If g2 CO, then w(O) = Wc2), u(W(0)) = u* > 0; whence F’(w(O)) > 0. 
(ii) If g1 dO<o,, applying (3.3) for a=O, we see that u(?V(O))>O; 

whence F’(^llr(O)) > 0. 
(iii) If oI >O, then w(O)= w(a,)= W,, and (3.3) yields u( WJ- 

c( W,) = CT, > 0; whence u(~‘Y(0)) = u(WL) L= 0, and again 
F’( W(0)) > 0. 

(b) Consider now the situation where the l-wave is a shock wave 
propagating with the speed g1 <U *. We again consider three different cases (see 
Fig. 3): 

(i) If CT~ < 0, then u(~V(0)) = u( W,,,) = U* > 0, and F’(%/(O)) > 0. 
(ii) If o1 = 0, the Rankine-Hugoniot relations for the steady l-shock imply 

(see ~231) 

P~(w,)=P~(w,*,)=P(w,*,)~*‘o, (3.4) 

and F’(w(0)) is well defined and positive since F’( W,)= 
~lw(*,)>o. 

01 I 
:. ,:’ 

i ,.:,’ 

-.-.-Y: __ -.-.----) 

i ,:I 
i ,:. 6) ,,’ -___- 

Cl = 0 
h 

-1 

.:’ ,:’ .:’ .:’ . ..’ 
,:’ (ii) 

.‘- - - - -.-) 

h , 01 
:’ ,:’ 

L-L 
i ,,:” /” (iii) 
,: 

FIG. 3. The three different configurations for the l-shock. 
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(iii) If ci > 0, then w(O) = W,, and the Lax conditions for the l-shock 
imply (see [23]): 

u(W,)-c(W,)>cr,>O. (35) 

This yields u( W,) > 0, whence F’(%‘“(O)) > 0. 1 

Proof of Lemma 1. For any (T E [w, we have from Fig. 1, 

Y(W(a))= ; 
1 

if c<u*, 

R if fr>u*. 

Using the definitions of F’ = pu and F4 = puY, we can write 

F4[YY(0)] = F’[w(O)] x ; 
if u*>O, 

R if u* < 0, 

(3.6) 

(3.7) 

and (3.2) follows from Lemma 2. [ 

Remark 3. It can be noticed that (3.2) and (3.7) remain valid if F’(?Y(O)) = 0 
or if u* = 0, since we then have F4(?K(0)) = F’(?V(O)) = 0 (we recall that, by delini- 
tion of the contact discontinuity, u* is also the velocity of the two states separated 
by this discontinuity: u( W,,,) = u( W,,,) = u*). 

Remark 4. We have assumed in the proof of Lemma 1 that a contact discon- 
tinuity actually exists in the structure of the exact solution WB. If this is not case, 
then Y(x, t) is necessarily constant, Y(x, t) E Y, = Y,, and (3.2) holds again. 

3.2. The Approximate Multi-component Riemann Flux 

We can now present the third approach (C), which is based on property (3.2). 
Keeping in mind that, in the “Godunov-type” schemes, the numerical flux &‘+ 1,2 

approximates the flux F[%‘f(O; WY, WY+ 1)], we can define a third approach (C) as 
follows for the Roe and Osher schemes: The first three components di+ ,,2, #+ 1,zr 
&+ l/2 of the flux are evaluated as in approach (B), but the fourth component of the 
flux is defined by the next relation, which mimics (3.2): 

44+1,2=4t+1,2x ; i 
if bi+ ,,2 > 0, 

IfI if fjf, ,,2 < 0. (3.8) 

Therefore, this approach (C) defines modified multi-component approximate 
Riemann solvers, which satisfy the property (3.2) of the exact Riemann solver. In 
comparison with approach (B), only the species mass fluxes are modified, so that 
approach (C) uses the same discrete mass fluxes for the species equation and for the 
continuity equation. 

Since the approximations used for the variables W’ and W4 are now well 
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coupled, we may expect better result for the mass fraction Y= W”/W’. This is the 
object of the next lemma and of the following remarks: 

LEMMA 3. Under the CFL-like condition, 

(3.9) 

the schemes of type (C) preserve the maximum principie for the mass fraction Y: for 
all i and n > 0, 

min Yy < Yy d max Y;. (3.10) 
i j 

Proof. Setting A = At/Ax, we have 

Pr+ ’ = PT - Jwt, I,2 - 4L l,Z)’ (3.11) 

pf+‘Y~+‘+‘=p:Y~-~“(~4+,,,-~4_,,,). (3.12) 

Let us temporarily assume that di+ ,,2 > 0, #!- 1,2 > 0. Then, (3.8), (3.11), and 
(3.12) imply 

(3.13) 

if (3.9) holds, (3.13) shows that Yi n + ’ is a convex linear combination of Y; and 
r.Ep 1 . 

It is easy to check that the same conclusion also holds with different hypotheses 
on the signs of df+ 1,2 and 4!- 1,2, which concludes the proof. 1 

Remark 5. It is implicitly assumed in the above proof that pl+’ does not 
vanish. Therefore, rigorously speaking, the property (3.10) only holds if the “Euler 
scheme” used to evaluate d’, b2, 4’ preserves the positivity of the density (this is, 
of course, the least one may ask to this “Euler scheme”!). 

Remark 6. One may think at first glance that the preceding proof does not use 
any property of the approximate mass flux 4’. This is not really the case. Indeed, 
it is easy to see that the CFL-like condition (3.9) which ensures the discrete maxi- 
mum principle for the mass fraction may well be impossible to fulfill in practice if 
one uses a centered approximation $1, ,,2 = +[(Pu)~+ (PU)~+ i] (take, for instance, 
u,=ti>O for all j, p:=&>O, P;+~== 1: (3.9) then imposes that zi At/Ax< 
2s/( 1 + E)!). On the other hand, several numerical experiments have shown that the 
condition (3.9) is not more restrictive than the usual CFL condition when an 
upwind scheme is used to evaluate the first three components of di+ ijz (see [6]). 

Remark 7. The proof of Lemma 3 shows that the definition (3.8) of d:+ ,,2 is 
exactly what is needed in order to ensure the maximum principle for the mass 
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fraction. We repeat that schemes of type (A) or (B) do not in general satisfy (3.10) 
(see, however, Remark 9 below). 

Remark 8. Arguing as in the proof of Lemma 3, one can show that the schemes 
of type (C) preserve the monotonicity of the mass fractions: if YJ” 6 Yy+ i for all j, 
then Yy < Y;+ i for all j and n > 0. More generally, these schemes are TVD (total 
variation diminishing) for the mass fraction Y. 

Remark 9. In principle, method (C) can be used in conjunction with any con- 
servative Euler scheme: one can use any of the classical schemes for the Euler equa- 
tions, and then discretize the species equation using (3.8). But, from the very origin 
of (3.8), approach (C) is designed for schemes based on approximate Riemann 
solvers. In particular, there is no interest in using approach (C) with the Van Leer 
scheme. Indeed, we have seen that the multi-component Van Leer scheme gives the 
following expressions for the first and fourth components of the numerical flux: 

df+ l/2 = F!+w;)+F’(W:+,), (3.14) 

&+1/2 = yiF!+(wr)+ yi+lFL(w:+l). (3.15) 

Thus, the Van Leer scheme of type (B) already uses the same discrete mass fluxes 
F’, for the continuity equation and the species equation, as the Roe and Osher 
schemes of type (C). Moreover, since F’+(W) > 0 and F\(W) < 0 for any W, it is 
easy to see that the proof of Lemma 3 applies: the Van Leer scheme of type (B) also 
preserves the maximum principle for the mass fraction. 

Remark 10. Consider the flow of a mixture of N species, with N> 2. Then, 
taking W= (p, pu, E, pY,, . . . . p Y, , ), one will preserve the inequalities 0 < Yk < 1 
for 16 k 6 N - 1 if approach (C) is used for the N - 1 species equations. Moreover, 
it is easy to see that the last mass fraction Y,, evaluated as (Y,): = 1 - C,“;i( Y,): 
will also remain in the interval [0, I]. 

Remark 11. Consider now the case where a diffusive term and a consumption 
source term appear in the right-hand side of the species equations, which then has 
the form 

(PY),+(PY~),=~Yy,,-KPY, (3.16) 

(with K> 0), and assume that a fully explicit scheme is used to discretize this 
equation (see Remark 18 below for an implicit treatment of (3.16)): 

w-):+’ -(Py):‘+94+ij2-~4_l,2=~ y:+l-2y:+ y:-l-Kp.y~, (3.17) 
At Ax AX2 I I 

It is then easy to see that the maximum principle for the mass fraction is again 
preserved under the following stability restriction on the time step 

miNti,‘-,,,,O) +2@+KAf<1 
P: 1 p; Ax= ’ 

Vi, (3.18) 
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if the convective term is approximated using approach (C). This maximum 
principle now takes the form 

if min Yp>O, then 0~ Yr <max Yy vi, vn. (3.19) 
i i 

4. EXTENSIONS 

Before discussing in detail the advantages and drawbacks of approach (C) and 
comparing it to approaches (A) and (B) in Section 5, we now present how these 
types of schemes can be extended to second-order accuracy, to implicit time- 
stepping, or to multi-dimensional flows while keeping the basic property (3.10). 

4.1. Second-Order Accuracy 

Let us therefore consider second-order extensions of the preceding schemes. More 
precisely, we will first consider schemes which are second-order accurate in space 
but remain first-order accurate in time. Starting from the previous first-order 
accurate schemes, the second-order spatial accuracy is obtained by using piecewise 
linear variables instead of piecewise constant variables, following the “MUSCL” 
approach of Van Leer [31]. This method involves three steps: 

(a) At each time step, starting from the values WY, one first evaluates slopes 
sr for all variables which are chosen to be piecewise linear. Several choices are 
possible at this stage (for instance, one can choose either the conservative variables 
p, pu, E, pY or the “physical variables” p, u, p, Y to vary linearly in each computa- 
tional cell); here, we take Y (and not pY) as a piecewise linear variable. 

(b) Slope limiters are then used in order to avoid the creation of new 
extrema; here again different strategies exist to evaluate the limited slopes. We 
assume here that the slopes are constrained such that, taking the variable Y as an 
example, we have 

(4.1) 

(c) The limited slopes are then used to evaluate cell-interface values WY+ ,,*, f 
(one sets Y;, r,* _ = Y; + (AX/~) s;, Y;- ,,2, + = Yy - (AX/~) s:), and the solution is 
advanced in time according to relation (IS), where we now take 

4i+ l/2 = @(WY, I/2. - 3 WY+ l/2, + 1. (4.2) 

This construction (a)-(c) can therefore be applied to any of the schemes presented 
in the preceding sections; in particular, we can construct a limited second-order 
accurate scheme of type (C) if in (4.2) we use a numerical flux function of type (C), 
that is with the fourth component 4” of the flux evaluated using (3.8). Then, we 
have the following: 
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LEMMA 4. Under the more restrictive CFL-like condition, 

max(df+,,,, 0) min(4i’- lpyo) <i pi 
P’ P: 1 ‘2 ’ (4.3) 

the spatially second-order accurate schemes of type (C) constructed above preserve 
the maximum principle for the mass fraction Y: for all i and n > 0, we have 

min Yy d YC 6 max YJ”. (4.4) 
I i 

Prooj We will assume that $f+ ,,2 > 0, 4iP i,* > 0 (the proof is very similar in the 
other cases). Using relations (3.1 l)-(3.12), we have 

Let a and b be two real numbers such that a < Y; 6 b for all j. Since 
YY- 112, ~ E [a, b] from (4.1), it suffices to check that 

E=Pfy~-igf+l,2yrtl,2,-ECa,b1. 

Pl- uf, I/2 

Using the definition of Y;, ,,2, _ and setting X= J(d,!+ 1,2/pr), we obtain 

p= yy- 
X Ax - - sn 

l-X2 ” 

(4.6) 

(4.7) 

and (4.6) holds from (4.1), since 0 <X6 $ from (4.3). [ 

Remark 12. The preceding proof clearly shows that it is preferable to use 
limited slopes for the variable Y and not for pY when the approach (C) is used to 
discretize the species equation. Nevertheless, this strategy is almost but not com- 
pletely sufficient to guarantee the preservation of the maximum principle for the 
mass fractions when a fully second-order accurate scheme (in both space and time) 
is used. This question is discussed in the Appendix. 

Remark 13. In the case of a mixture of two species 9i and Y;, the preceding 
proof shows that the mass fractions of both species will remain in the interval 
[0, l] when the above spatially second-order accurate method is used; since Y, = 
YE [0, 11, then Y, = 1 - YE [0, 11. But additional difficulties arise when one con- 
siders mixtures of N species with N > 2. Applying the above method to species k, 
we get (Y,): E [0, l] for all k, 1 <k < N - 1; but it is no more clear whether 
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(Y,,,); = 1 - C,“::( Yk)? also is in the interval [0, l] (this comes from the fact that 
the limiters are by their very essence nonlinear). A way to remedy this difficulty is 
the following: instead of treating separately the Nth species, one could treat all 
species in the same way, setting ( Y,);, ,,2, _ = (Y,)? + (dx/2)(s,); and applying the 
scheme of type (C) for all k, 1 <k < N (and not N- 1). The maximum principle 
will be preserved if the slopes are constrained such that 

(which is equivalent to (4.1)) and 

for all i and PI (the last relation imposes that the equality x:,“= I( Y,): = 1 is 
preserved). 

4.2. Implicit Time Stepping 

Let us now consider the extension to an implicit time stepping. As in the explicit 
case, the implicit (C) schemes will be based on the principle that the species equa- 
tion is integrated after the Euler equations, using the discrete mass fluxes of the 
continuity equation. 

Let us therefore consider as given a conservative implicit scheme for the Euler 
equations, which we write as 

(W’)Y” -(w’):I+~~::;:-4:nt:=0 
At Ax ’ 

(4.10) 

for I = 1,2, 3, where in general ti$J$ depends on WY, W:, 1, WY+ ‘, WY:;: the 
values ( W’); + ’ (16 1~ 3) are computed from the values WY by solving at each time 
step either a nonlinear or a linear discrete problem (see, e.g., [S, 133 for such 
implicit versions of the most classical upwind Euler schemes). 

Then, we construct an implicit multi-component scheme of type (C) by adding 
the following discrete species equation: 

by):+’ - (P Y)Y + 44;“;: - 4::;: = o 

At Ax 9 

where we take 

(4.11) 

(4.12) 



74 B.LARROUTUROU 

Therefore the solution of a linear system is required at each time step to evaluate 
the mass fractions Y;+l. 

The next lemma shows that this scheme still has the property (3.10), without any 
restriction on the time step. 

LEMMA 5. For any value of the time step At >O, the scheme (4.10)-(4.12) 
preserves the maximum principle for the mass fraction Y: for all i and n 2 0, 

min Yp < Y: 6 max Yp. (4.13) 
/ i 

ProoJ: The mass fractions Y:+’ at time level n + 1 are obtained by solving the 
tridiagonal system 

(4.14) 

where BT, = p;6, j (6, is the Kronecker delta), and 

A;:‘=pr+‘+~max(~l;_“S:,O)-~“min(~l~~:,O), 

ATi+,‘, = A min(dtf$, 0), (4.15) 

A;:_“, = -1 max(tifx”l;i, 0). 

It is clear from these expressions that the matrix A = (A;,“) is an M-matrix, i.e., 
that 

A :,+5-o Vi, 

A:,;’ <O Vi# j, (4.16) 

1 A;f’>O Vi. 

These properties imply that the matrix A-’ has only positive elements (see, e.g., 
[33]): (Ap1)i,i20 for all i andj. Thus, writing C= A-‘B (where B= (B&)), we see 
that 

c, j 2 0 for all i and j. (4.17) 

Now denoting U the vector whose components are all equal to 1, we see from 
(4.11)-(4.12) and (4.10) written for I= 1 that AU= BU, whence CU= U; that is, 

1 C, j = 1 for all i. (4.18) 

Since (4.14) implies that Yy+’ = C Ci,jY;, (4.18) and (4.19) show that Y?+’ is 
again a linear convex combination of the old mass fraction values Yy, which ends 
the proof. 1 
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Remark 14. The preceding proof is slightly too vague: we have not taken any 
boundary condition into account. In practice, the matrix A and the vector U are of 
finite size, and one has to check that the discrete maximum principle (4.13) holds 
with the actual discrete boundary conditions. 

Remark 15. In practice, implementing the implicit scheme (4.10)-(4.12) may be 
far less simple than implementing the explicit schemes of type (C). Indeed, the 
implicit integration of the Euler equations often uses a linearized implicit flux (see, 
e.g., [8, 131); that is, the fluxes $!::,l in (4.10) are given as 

$bfy ;,; = @‘(wy, w:+,)+g,(wy- w:)+$ (WY;,’ - WY+ 1), (4.19) 
I I+1 

which leads to solving at each time step a linear system for computing py+‘, 
(pu)y+‘, ,;+l for all i Once these values are known, one has to use them to 
evaluate the fluxes #!T” + ’ ,+ 1,2 given by (4.19) before one can solve the species equation 
using the species fluxes (4.12) (see [24] for more details). 

Remark 16. In some circumstances, such as for highly subsonic flows, it may be 
of interest to integrate explicitly the species equation while treating implicitly the 
Euler equations (see [lo]). Then, to construct a semi-implicit multi-component 
scheme of type (C), we simply replace (4.12) by 

(4.20) 

This scheme again preserves the maximum principle (4.13) for the mass fraction, 
under a CFL-like condition (this condition is obtained by replacing the fluxes 4, 
by 4 ld + ’ in (3.9)). 

Remark 17. Consider again the flow of N species, with N> 2. Then, the matrix 
A appearing in the linear system which is to be solved at each time step for 
updating the mass fraction values is the same for all species equations; moreover, 
A is an M-matrix, which makes it easier to solve the linear systems. 

Remark 18. Remark 11 also holds for implicit schemes. When the species equa- 
tion has the form (3.16), the maximum principle (3.17) is preserved if the implicit 
approach (C) is used in conjunction with classical explicit or implicit approxima- 
tions of the diffusive and reactive terms. More precisely, the maximum principle is 
preserved under appropriate stability conditions if the diffusive or the reactive term 
is integrated explicitly, and it is preserved for any value of the time step if all terms 
are treated implicitly. The latter is even true when a complex set of chemical 
reactions is considered (the proof of this fact is similar to the one in [ 141, where 
an upwind treatment of a linear convection operator is considered instead of the 
present approach (C)). 



76 

f@,+p’,+C?,=O, with 
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4.3. Multi-dimensional Flows 

All the above methods which have been presented so far in a one-dimensional 
context can be extended to multi-dimensional flows. We simply recall here the basic 
features of this extension to two-dimensional geometries; to make the approach 
very general, we consider a two-dimensional unstructured triangular mesh (see 
Fig. 4), following the ideas of Dervieux and Fezoui (see [S, 121); but all approaches 
(A), (B), and (C) can of course be used on structured quadrilateral finite-volume 
meshes. 

Let us therefore consider the two-dimensional multi-cc omponent Euler equations 

(4.21) 

P=(Y-NE-$p(u2+v2)], (4.22) 

where y is again the local specific heat ratio (1.3) of the mixture. 

FIG. 4. The control volume C, 
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Then, we consider a dual partition of the domain in control volumes or cells: a 
cell Ci is constructed around each vertex Sj by means of the medians of the 
neighbouring triangles, as shown on Fig. 4. 

Integrating the system I8’t + f.Y + e, = 0 on the control volume Ci, we obtain 

where vi= (v-T, v;“) is the outward unit normal on XY;. In fact, we rewrite (4.23) as 

jJ bv,+ c j (hJ;+&g=o, =, jE X(i) ac, 
(4.24) 

where X(i) is the set of neighbouring nodes of Si, and where X, = X, n Xi. 
Then, the flux integrals in (4.24) are approximated using a lD-like procedure, as 
explained below: 

The fact that the system l@t + p( I@).l), + C?( I@)Y = 0 is a nonlinear hyperbolic 
system of conservation laws means that, for any (a, /I) E Iw2, the matrix a(8&YI&‘) + 
p(&?/a@) has live real eigenvalues, 

with c= a, and a complete set of real eigenvectors. Thus, we can extend all 
approximations defined in Section 2 for the one-dimensional flux vector F to the 
flux vector a$+ /I& (in other words, we use here the rotational invariance of the 
Euler equations). Consider, for instance, the Steger and Warming approximation. 
Given two values fiL and CR, and a vector n = (@, q”), we define a numerical flux 
function Qi by 

@ML edll)=(AJ+ (@IL) @IL+MJ- m) @R, (4.26) 

where A, is the matrix $(afi/jal@) + ~Y(&/al$‘); thus, we define the vector vi, = 
(v& $1 by 

vi= 
s VI”> vll; = 

s $3 
a=lJ a=, 

(4.27) 

and we obtain a first-order accurate explicit upwind approximation of (4.24) by 
writing 

Jfy'-~ 

At 
area + 1 @( *, I@;, Vu) = 0. 

js X(i) 

(4.28) 
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This extension to two space dimensions can of course be used for method (C). 
Then, the first four components of @(pi, fij, vii) are evaluated using an “Euler 
scheme,” and the fifth component is given by 

It is straightforward to check that this two-dimensional extension of method (C) 
still preserves the maximum principle for the mass fraction. 

The above multi-dimensional approach (C) can of course be used when diffusive, 
viscous and reactive effects are added to the Euler equations (4.21). We refer to, 
e.g., [S, 211 for the details. 

5. NUMERICAL RESULTS 

Several numerical experiments, involving the first- or second-order accurate 
schemes of type (A), (B), and (C) have been done by D. Chargy, R. Abgrall, 
L. Fezoui, and the author, and detailed comparisons are presented in [6]. We 
simply illustrate here the main features of methods (A), (B), and (C) by showing 
one numerical example. 

We consider the well-known shock tube of Sod [29], with two different species. 
More precisely, we solve the Riemann problem (3.1) with 

pL,= 1, pR =0.125, 

u,=o, uR=o, 

Pt. = 1, pR=O.l, 

Y,= 1, Y,=O, 

with y, = 1.4, y2 = 1.2, and C,, = C,,Z. We have used 101 equally spaced mesh points 
in the interval [ -0.5, OS], and At is chosen at each time level according to the 
classical CFL condition: 

max(ju,+cil, 1~~1, /uj-ci~)~=CFL<l (5.2) I 

(we take CFL = 0.75). 
Figures 5 and 6 show the results obtained at time t = 0.21 using the explicit Roe 

schemes of types (A), (B), and (C). These results are only first-order accurate: no 
particular attention should therefore be paid to the quality of the results for the 
Euler variables (density, velocity, and pressure), since no particular care of reducing 
the numerical diffusion has been taken. These results can be improved using any of 
the now classical devices for nonoscillatory second-order accurate schemes: slope 
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0 

FIG. 5. Mass fraction profiles: computed and exact solutions. 

:. 
b . . . . . 

FIG. 6. Density, pressure, and velocity profiles: computed and exact solutions. 

581/95/l-6 
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limiters, as briefly mentioned above, or TVD or FCT methods (see, e.g., [25, 343). 
The quality of the results given by the Roe, Osher, or Van Leer schemes on the con- 
sidered two-component shock tube problem are approximately the same as for the 
corresponding single-component shock tube; the only difference concerns the treat- 
ment of the contact discontinuity, where all schemes have difficulties in keeping a 
constant value for the velocity and pressure (see [ 1, 6, 221 for an attempt to explain 
this difficulty). 

The mass fraction profiles are shown on Fig. 5. Clearly the results of methods (B) 
and (C) are far superior than those of approach (A), which gives very bad mass 
fraction values. Moreover, the computed mass fractions are slightly better with 
approach (C) than with approach (B). Notice indeed that values of Y which are 
slightly out of the interval [0, 1 ] appear in case (B), where max, Yr = 1 + 1.5 x lo- 6 
(the error in this value is small but significant, since the computation has been 
made using double-precision real numbers; in other situations, negative values of Y 
of the order of lop2 or even 10 ~ ’ appear when schemes of type (B) are used; see 
[6, 111). Therefore, schemes of type (C), which preserve the maximum principle, 
actually give more accurate results for the mass fraction. 

We should emphasize here that preserving the maximum principle for the mass 
fraction Y is far superior than preserving only the positivity of Y. Indeed, approach 
(A) preserves the positivity, but gives very poor results. On the other hand, 
approach (C) preserves the maximum principle. 

Beside this, it appears on Fig. 6 that the results obtained in cases (B) and (C) for 
the hydrodynamical variables p, U, p are almost indistinguishable. 

One could think that the schemes of type (C) are more expensive that the corre- 
sponding schemes of type (B), since applying method (C) consists in applying 
method (B) and then modifying the species mass fluxes using (3.8). But this is not 
the case, because only the first three components of the numerical flux d have to 
be evaluated before one uses (3.8); in practice, the cost of method (C) is slightly 
smaller than the cost of method (B) (3 or 5% for an explicit calculation). 

6. CONCLUSIONS 

We have examined why the approximate Riemann solvers of Roe and Osher do 
not preserve the maximum principle for the mass fractions when applied to the 
computation of multi-component flows, and proposed a modification of these 
schemes, based on some property of the exact solution of the multi-component 
Riemann problem. 

The basic idea behind this new approach is simple: when the same discrete mass 
fluxes are used to approximate the convective fluxes of the continuity equation and 
of all mass fraction equations, the resulting scheme preserves the maximum 
principle (and in particular the positivity) for all mass fractions. 

This advantage may reveal many very useful applications (see the results in 
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[6, 24]), and in particular for reactive flows where the nonlinear chemical source 
terms precisely involve the mass fractions and where the appearance of negative 
mass fractions very often leads to nonlinear numerical instabilities. 

APPENDIX 

As already said in Remark 12, we examine in this Appendix the extension of 
approach (C) to fully second-order accurate (in both space and time) schemes. 

In comparison with Section 4.1, the temporal second-order accuracy will now be 
obtained by evaluating the fluxes at the half time step n + i (see, e.g., [ 12, 311). 
Thus, the integration from time t” to t ‘+’ is done using the five successive steps 
described below (steps (a) and (b) are the same as in Section 4.1): 

(a) At each time step, starting from the values WY, one first evaluate slopes 
sr for all variables which are chosen to be piecewise linear. Again, we take here Y 
(and not pY) as a piecewise linear variable. 

(b) Slope limiters are then used in order to avoid the creation of new 
extrema; in particular, (4.1) still holds: 

(c) The limited slopes are used to evaluate cell-interface values WY+ ,,2, +, 
and the solution is advanced in time over a half time step using a centered 
predictor, setting: 

W:+ ‘I2 = W; -; [F( W:, ,/2. ~ ) - F( W:- l/2, + )I. C.4.2) 

(d) Next, we again use the same slopes sy to evaluate cell interface values 
w::l::’ * 

(e) 
at the half time step (in particular, we set Y:z$: ~ = YC + ‘I2 + (AX/~) SC). 

Lastly, we complete the time step by evaluating WC+‘, using the upwind 
numerical flux function @. 

(A.3) 

where: 

Let us use this construction (a)-(e) with a numerical flux function of type (C), 
that is with the fourth component 4” of the flux evaluated using (3.8), and examine 
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whether the maximum principle is preserved for the mass fraction under the 
following CFL-like condition (which now replaces (4.3)): 

max(dfTGd’2, 0) min(~,!~:/~‘2, 0) 

P: Pi’+ 1 
(A.51 

We will assume that ~$~~” >O and qS,!“&“‘>O. Then, we have d>~,‘ji” = - 
#i$;i/* Y;:i,!i ~, and we obtain 

where we now have set 

(‘4.6) 

(A.71 

Let again a and b be two real numbers such that a < Yy < b for all j; we have to 
examine if both values Yy.+//!- and f are in the interval [a, b]. 

Let us introduce some notations. We set 

and 

zi+,i2=~(p~):1+1:2.-, z;~,,2=i.(p~)r~1;2.+~ 
P: P? 

Then, we obtain 

P?+"*= P:'- $PlK+ I,2 - Zi& 1,2)r 

p~+1’2Y:+“2=P:Y~-~p~(Zi+,,*Yp+,,2,. -ZI-,,/*Y~-,,2,+), 

and it is easy to check that 

yn+U*= yy$!2sn Z I + l/2 + zi ~ l/2 
I 4 ’ 1-$(zi+1/2-zi-l,C2)' 

1 - z, + l/2 

(A.81 

(A.91 

(A.lO) 

(A.ll) 

(A.12) 

(A.13) 

(A.14) 

We know from (A.5) and our assumptions on the sign of ~~~~~” that 
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06X. ,+ 1,2 6 i. Thus the term in parentheses in (A.14) is in the interval [0, 11. If, 
moreover, we also have 

O < zj* I,/2 6 f for all j, (A.15) 

then it is easy to conclude from (A.13), (A.14), and (A.l) that the term in brackets 
in (A.13)-(A.14) also is in the interval [0, 11, whence Y:z,t/iP E [a, b] and 
YE [a, b]. But these conclusions do not hold any longer if Zip ,,z + Zip ,,,2 < 0 (the 
term in brackets in (A.1 3)-(A. 14) then exceeds 1). Of course, since we have 
assumed that #icl;ii2 >O and ~$f”&‘/” >O, the quantities Zi+1,2 and Zim_ ,/2 are 
likely to be positive. Therefore, we can only conclude (but this conclusion is 
confirmed by the numerical experiments; see [6]) that this second-order accurate 
scheme preserves in general the maximum principle for the mass fraction. 

ACKNOWLEDGMENTS 

I thank my colleagues R. Abgrall, D. Chargy, and L. Fezoui for their help in this work 

REFERENCES 

1. R. ABGRALL, Rech. AProsp. 6, 31 (1988). 
2. R. ABGRALL AND J. L. MONTAGNB, Rech. AProsp. 4, 1 (1989). 
3. F. BENKHALDOUN, A. DERVIEUX, G. FERNANDEZ, H. GUILLARD, AND B. LARROUTLJROU, “Some 

Finite-Element Investigations of Stiff Combustion Problems: Mesh Adaption and Implicit Time- 
Stepping,” in Mathematical Modelling in Combustion and Related Topics, edited by C. Brauner and 
C. Schmidt-Lain& (NATO AS1 Series E, Nijhoff, Dordrecht, 1988), p. 393. 

4. G. V. CANDLER AND R. W. MCCORMACK, “The Computation of Hypersonic Flows in Chemical and 
Thermal Nonequilibrium,” Paper No. 107, Third National Aero-Space Plane Technology Sym- 
posium (1987). 

5. D. CHARGY, “Simulation numerique d’icoulements reactifs transsoniques,” thesis, in preparation. 
6. D. CHARGY, R. ABGRALL, L. FEZOUI, AND B. LARROUTUROU, “Comparisons of Several Numerical 

Schemes for Multi-component One-dimensional Flows,” INRIA Report 1253, (1990). 
7. D. CHARGY, A. DERVIEUX, AND B. LARROUTUROU, “Upwind adaptive finite-element investigations of 

two-dimensional transonic reactive flows,” I~I. J. Num. Methods Fluids 11, 751 (1990). 
8. A. DERVIEUX, “Steady Euler Simulations Using Unstructured Meshes,” m Partial Differential Equa- 

tions of Hyperbolic Type and Applications, edited by G. Geymonat (World Scientific, Singapore, 
1987), p. 33. 

9. J. A. DBSIDBRI, N. GLINSKY, AND E. HETTENA, “Hypersonic Reactive Flow Computations,” Cornput. 
Fluids 18 (2) 151-182 (1990). 

10. G. FERNANDEZ AND H. GUILLARD, “Implicit Schemes for Subsonic Combustion Problems,” 
in Numerical Combustion, edited by A. Dervieux and B. Larrouturou (Lecture Notes in Physics, 
Vol. 351, Springer-Verlag, New York/Berlin, 1989) p. 277. 

11. G. FERNANDEZ AND B. LARROUTLJROU, “Hyperbolic Schemes for Multi-component Euler Equa- 
tions,” in Nonlinear Hyperbolic Equations-Theory, Numerical Methodr, and Applications, edited by 
J. Ballmann and R. Jeltsch (Notes on Numerical Fluid Mechanics, Vol. 24, Vieweg, Braunschweig, 
1989), p. 128. 

12. L. FEZOUI, INRIA Report 358 (1985). 



84 B. LARROUTUROU 

13. L. FEZOUI AND B. STOUFFLET, J. Comput. Phys. 84, No. I, 174 ( 1989). 
14. M. GHILANI ANI) B. LARROUTUROIJ, “Upwind Computation of Steady Planar Flames with Complex 

Chemistry,” Mod. Math. Anal. Num. 25 (l), 67 (1991). 
15. S. K. GOD~NOV. Math. Sh. 47, 271 (1959). 
16. B. GROSSMANN AND P. CINNELLA, “Upwind Methods for Flows with Non-equilibrium Chemistry 

and Thermodynamics,” in Numerical Combustion, edited by A. Dervieux and B. Larrouturou 
(Lecture Notes in Physics, Vol. 351, Springer-Verlag, New York/Berlin, 1989), p. 323. 

17. A. HABBAL, A. DERVIEUX, H. GUILLARD, AND B. LARROUTUROU, INRIA Report 690 (1987). 
18. A. HAR~P~, P. D. LAX, ANL) B. VAN LEER, SIAM Rev. 25, 35 (1983). 
19. K. KAILASANATH. E. S. ORAN, AND J. P. BORIS, “Numerical Simulations of Flames and Detona- 

tions,” in Numerical Combustion, edited by A. Dervieux and B. Larrouturou (Lecture Notes in 
Physics, Vol. 351, Springer-Verlag, New York/Berlin, 1989), p. 82. 

20. B. LARROUTUROU, Introduction to Comhustion Modriling (Springer Series in Computational Physics, 
1991), to appear. 

21. B. LARROUTUROU, “Recent Progress in Reactive Flow Computations,” in Computing Methods in 
Applied Sciences and Engineering, edited by R. Glowinski (SIAM, Philadelphia, 1990), p. 249. 

22. B. LARROU~UROU AND L. FEZOUI. “On the Equations of Multi-component Perfect or Real Gas 
Inviscid Flow,” in Nonlineur Hyperbolic Problems, edited by Carasso Charrier Hanouzet Joly (Lec- 
ture Notes in Mathematics, Vol. 1402. Springer-Verlag, Heidelberg, 1989). 

23. P. D. LAX, “Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock 
Waves,” CBMS Regional Conference Series in Applied Mathematics, Vol. 11 (SIAM, Philadelphia, 
1972). 

24. B. N’KONGA, H. GUILLARD, AND B. LARROLTUROC, in preparation. 
25. E. S. ORAN AND J. P. BORIS, Numerical Simulation of Reactive Flows (Elsevier, New York, 1987). 
26. S. OSHER AND F. SOLOMON, Math. Comput. 38, 339 (1982). 
27. W. RODI, Turbulence Models and Their Applications in Hydraulics, AIRH (1984). 
28. P. L. ROE, J. Comput. Phys. 43, 357 (1981). 
29. G. A. SOD, J. Comput. Phys. 27, 1 (1977). 
30. J. L. STEGER AND R. F. WARMING, J. Comput. Phys. 40, 263 (1981). 
31. B. VAN LEER, J. Comput. Phys. 23, 263 (1977). 
32. B. VAN LEER, “Flux-Vector Splitting for the Euler Equations, ” in Eighth International Conference on 

Numerical Methods in Fluid Dynamics, edited by E. Krause (Lecture Notes in Physics, Vol. 170. 
Springer-Verlag, New York/Berlin, 1982), p. 507. 

33. R. S. VARGA, Matrix Iterative AnaiJsis (Prentice-Hall, Englewood Cliffs, NJ, 1962). 
34. H. C. YEE. NASA Ames Technical Memorandum 89464 (1987). 


